
Download free eBooks at bookboon.com

Perl for Beginners

40

Pattern matching

10 Pattern matching

10.1 Matching and substitution

So far, we have been looking at standard programming functions that just about any language includes.
There is nothing very special in the way that Perl implements these. Perl’s particular glory lies in pattern
matching, and we turn to that now.

Pattern matching is about finding particular arrangements of characters within strings (and changing the
strings in some way, or taking some other action, when the target patterns are found). Pattern matching in
Perl uses the symbol =~ to link the string being examined (the target string) to one of two matching
actions, identified by the letters m (match) or s (substitute):

m/…/ return “true” if the pattern … is present, “false” otherwise
s/…/…/ if the pattern … to the left is found, change it to … on the right

Pattern matching is about finding the pattern within the target string. The pattern usually will not comprise
the whole of the target string (though we shall see that, if that is what we want, we can specify that.)

The simplest kind of pattern to look for is a particular substring (though the possibilities become far more
sophisticated than that). Let’s look at a couple of examples of that simple kind:

$a = "location";
if ($a =~ m/cat/)
 {
 print "Found a cat.\n";
 }

Found a cat.

$a = "location";
$a =~ s/cat/cut/;
print "$a\n";

locution

I shall call the material represented by dots in m/…/ and to the left in s/…/…/ the pattern section,
and I shall call the material represented by the right-hand dots in s/…/…/ the replacement section.

In the case of the m/…/ construction, it is permissible to omit the m; rather than if ($a =~ m/cat/)
it works just as well to write if ($a =~ /cat/). This abbreviation saves so little typing that it seems
pointless for the language to include it; however, because one can omit the m, Perl programmers almost
always do omit it – so that readers who move on to other Perl textbooks could be confused if the
abbreviation were not mentioned here.12

Also with the m/…/ construction, alongside =~ for “matches” there is also the symbol !~ for “does
not match”:

http://bookboon.com/

Download free eBooks at bookboon.com

Perl for Beginners

41

Pattern matching

$a = "location";
if ($a !~ /dog/)
 {
 print "No dog here.\n";
 }

No dog here.

If the !~ symbol did not exist, it would of course be easy enough to achieve the same by writing:

if (not($a =~ /dog/))

but perhaps this abbreviation earns its keep a little better than the omission of m.

10.2 Character classes

Matching a specific substring gets us only so far in practice. Things get more interesting when our patterns
refer to classes of characters, repetitions of pattern elements, and so forth.

To make the discussion concrete, let us suppose that (via the INFILE handle) we are reading the text file
shown as Figure 1, which is a list of English counties and their populations (in thousands) at the year 1966.
(We could of course have used newer data – but it happens that the 1960s data have features which will be
helpful for illustrating certain aspects of Perl.)

Intentionally, I have set the file out rather messily – some lines have whitespace before the county name,
and the whitespace within some county names and separating names from population figures varies from
line to line, containing spaces, tab characters, or both. Text files in real life often are rather messy, and
Perl is good for dealing with that kind of mess: messy input will give the pattern matcher good practice.

http://bookboon.com/

Download free eBooks at bookboon.com

Perl for Beginners

42

Pattern matching

Bedfordshire 428
 Berkshire 585
Buckinghamshire 542
Cambridgeshire and Isle of Ely 294
Cheshire 1472
Cornwall 353
Cumberland 296
Derbyshire 912
Devon 865
 Dorset 333
Durham 1541
Essex 1244
Gloucestershire 1054
Hampshire 1483
Herefordshire 140
Hertfordshire 872
Huntingdonshire and Peterborough 184
Kent 1325
Lancashire 5189
Leicestershire 716
Lincolnshire (Holland) 105
Lincolnshire (Kesteven) 226
Lincolnshire (Lindsey) 453
Greater London 7914
Norfolk 586
Northamptonshire 428
Northumberland 828
Nottinghamshire 954
Oxfordshire 349
Rutland 28
Shropshire 322
Somerset 638
Staffordshire 1802
East Suffolk 371
West Suffolk 148
Surrey 977
East Sussex 710
West Sussex 450
Warwickshire 2095
Westmorland 67
Isle of Wight 97
Wiltshire 471
Worcestershire 663
Yorkshire, East Riding 543
Yorkshire, North Riding 584
Yorkshire, West Riding 3736

 Figure 1

Let’s say that we want to extract a list of just those counties with populations of at least a million. Since
the numbers shown are thousands, this means in practice: lines containing at least four consecutive digits.

One way to specify a class of characters is by listing them within square brackets. So we could achieve
what we want, cumbersomely, by writing:

http://bookboon.com/

Download free eBooks at bookboon.com

Click on the ad to read more

Perl for Beginners

43

Pattern matching

(9)

1 while ($line = <INFILE>)
2 {
3 chomp($line);
4 if ($line =~ m/[0123456789][0123456789][0123456789][0123456789]/)
5 {
6 print "$line\n";
7 }
8 }

in which case the machine would respond:

Cheshire 1472
Durham 1541
Essex 1244
Gloucestershire 1054
Hampshire 1483
Kent 1325
Lancashire 5189
Greater London 7914
Staffordshire 1802
Warwickshire 2095
Yorkshire, West Riding 3736

http://bookboon.com/
http://bookboon.com/count/advert/7df08111-c180-4bd8-97db-a2d500e6043a

Download free eBooks at bookboon.com

Perl for Beginners

44

Pattern matching

But Perl knows the character sequence; a cumbersome expression like [0123456789] can be
abbreviated as [0-9] (and similarly, [defghij] could be given as [d-j]). So line 9.4 could be
reduced to:

if ($line =~ /[0-9][0-9][0-9][0-9]/)

(remember that m for “matches” can be omitted).

Better still, since the class of digits from 0 to 9 is often useful, Perl provides a backslash code \d for that
class: the line can be shortened further to:

if ($line =~ /\d\d\d\d/)

Other frequently-useful class codes are \s for whitespace characters (space, tab, newline), and \w for
“word characters”, meaning letters of the alphabet, digits, or the underline character (but not e.g.
punctuation marks).13 Capitals in class codes denote the complementary classes: \D is any character
other than a digit, \S is any “black” (i.e. non-whitespace) character, \W any nonalphanumeric, non-
underline character.

Furthermore, rather than repeating \d four times, we can specify the number of repetitions wanted
within curly brackets:

if ($line =~ /\d{4}/)

(If we wanted to say “at least 4”, so as to allow explicitly for populations of ten million or more, that would
be {4,}; and {4,6} following a pattern element would mean “at least 4 and not more than 6”. But this
level of explicitness is not needed in the present example; if a string $line contains five consecutive
digits it must certainly contain four consecutive digits, so it will match the pattern shown above.)

10.3 Complement classes and indefinite repetition

Some counties have multi-word names including spaces. Let’s suppose that we want to pick out those
lines. We might think of doing that by changing 9.4 so that instead of looking for a sequence of digits, it
looks for a whitespace followed by an alphabetic character:

if ($line =~ /\s[A-Za-z]/)

(Perl offers no backslash code covering letters only; \w covers numbers too. [A-Za-z] is as concise
as we can get for “any (upper or lower case) letter”.)

One problem with this, though, is that the names for the divisions of Lincolnshire would be missed: in
those names the internal space is followed by an opening bracket rather than a letter. It would be better to
define the test as “space followed by any black character other than a digit”. We can code this by using the
notation [^…] meaning “any character other than … ”. Our line then becomes:

http://bookboon.com/

Download free eBooks at bookboon.com

Perl for Beginners

45

Pattern matching

if ($line =~ /\s[^\s\d]/)

i.e. the pattern is “whitespace followed by a character that is neither whitespace nor a digit”.

However, either of these versions assumes that no line has spaces at the beginning, before the name – any
line written that way would get picked by this if statement, whether the county name were one word or
more – in the present case it would wrongly pick Berkshire and Dorset. As we have seen, it is usually best
not to make too many assumptions about where an input file includes whitespace and whether this consists
of one or more space(s) and/or tab(s). What we are really looking for is any stretch of whitespace having
non-numeric black characters on both sides. “One or more” is represented by the plus sign, so the
following version of the if statement will do the trick:

if ($line =~ /[^\s\d]\s+[^\s\d]/)

With this line substituted for line 9.4, when we run (9) the output will be:

Cambridgeshire and Isle of Ely 294
Huntingdonshire and Peterborough 184
Lincolnshire (Holland) 105
Lincolnshire (Kesteven) 226
Lincolnshire (Lindsey) 453
Greater London 7914
East Suffolk 371
West Suffolk 148
East Sussex 710
West Sussex 450
Isle of Wight 97
Yorkshire, East Riding 543
Yorkshire, North Riding 584
Yorkshire, West Riding 3736

Having said that it is safest to allow for messy use of whitespace in input files, perhaps we might actually
want to locate lines with initial whitespace, in order to tidy the file up by deleting it. In a pattern, ^ outside
square brackets represents the beginning (and $ represents the end) of a string.14 So, if $line is, say, the
string “ Dorset 333” (beginning with three space characters), the following substitution statement:

$line =~ s/^\s+//;

will remove its leading spaces. (// as the replacement section changes the substring matching the pattern
section to nothing, in other words it deletes that substring.)

If $line were a line having no leading whitespace, the statement above would ignore it: + means “one
or more”, so the pattern would not be found and no substitution would occur.

Alongside + for “one or more” we have the symbol * meaning “zero or more”, so we could
alternatively write the statement as:

$line =~ s/^\s*//;

http://bookboon.com/

Download free eBooks at bookboon.com

Click on the ad to read more

Perl for Beginners

46

Pattern matching

This statement will successfully apply to any line whatever (every line begins with at least zero
whitespace characters). But, if \s* does match zero whitespace characters, then nothing will be
replaced by nothing, in other words there will be no actual change to strings that lack leading whitespace.
Here, statements using + and * are interchangeable in practice; in other situations the distinction
between these symbols is crucial.15

10.4 Capturing subpatterns

You might object here: if + (or *) can be any number from one (or zero) upwards, how do we know
that \s+ will match all three leading spaces in a string which contains them, rather than just one or two
of them, or none of them if the pattern uses the asterisk? In fact either version of the statement will match
all three leading spaces, because Perl pattern-matching is “greedy” – where alternative fits to a pattern are
possible, it will always take the one which matches more rather than less of the string under consideration.
However, it would clearly be safer to be explicit, and require a black character to follow the whitespace to
be eliminated.

But that black character will be the first letter of the county name – we need to retain it in the replacement.
Putting round brackets around part of the pattern “captures” whatever substring matches that subpattern so
that we can refer back to it in the replacement section: $1, $2, etc. mean “whatever matched the
first/second/… bracketed subpattern”.

http://bookboon.com/
http://bookboon.com/count/advert/fba1fd82-96d7-e011-adca-22a08ed629e5

Download free eBooks at bookboon.com

Perl for Beginners

47

Pattern matching

Thus, here is a snippet of code which will go through a file removing any leading or trailing whitespace
from a line that contains some black characters. It uses the full-stop symbol “.”, meaning “any character
whatever, black or white” – between the first and last black characters of the line there can be any number
of intermediate characters, including letters, numbers, and whitespace:

(10)

1 while ($a = <INFILE>)
2 {
3 chomp($a);
4 $a =~ s/^\s*(\S.*\S)\s*$/$1/;
5 print "$a\n";
6 }

The pattern section of the substitution construction in 10.4 specifies beginning-of-line followed by any
number of whitespaces followed by a black character, then any sequence of characters of any kind, followed
by a black character and then zero or more whitespaces to the end of the line. The replacement section keeps
the first and last black characters and whatever came between them. In 10.4 we must write \s* rather than
\s+, because we don’t want the statement to apply only to lines that contain both leading and trailing
whitespace: we want it to apply whenever there is whitespace at either end, or at both ends.

(In our county-population file, we know that the first black character of a line will always be a letter and
the last will always be a digit, and we also know that there will always be several characters between the
first and last black characters; so (10) would work just as well if the subpattern within brackets were
written as (\w.*\d) or (\w.+\d). But 10.4 is a more general way of pruning leading and trailing
whitespace – it would work equally well for a file in which some lines have punctuation marks at
beginning or end, or in which there are only two black characters with nothing between them.)

10.5 Alternatives

The substitution statement 10.4 should work successfully with the material of Figure 1, but it is not as
general as it might be. It will ignore a line consisting only of whitespace, since there will be no characters
for the \S symbols to match. Furthermore, it will also ignore a line with just one black character
surrounded by whitespace on either side. Each \S in the sequence \S.*\S must match a separate
black character, so the line must contain at least two. In the present context where we are dealing with lists
of counties and their populations, although wholly-blank lines might occur, we should be safe in assuming
that there will never be a line with just one black character. But suppose that we were dealing with some
other kind of input file in which this latter kind of line did occur, and we wanted it too to have leading and
trailing whitespace removed. To achieve that, we could modify (10.4) using the symbol “|” to represent
alternatives:

$a =~ s/^\s*(\S.*\S|\S)\s*$/$1/;

http://bookboon.com/

Download free eBooks at bookboon.com

Perl for Beginners

48

Pattern matching

When we use | for “or” in a pattern, normally (as here) we will need round brackets around the
alternatives, to show where they begin and end within the pattern. In this case we need the brackets
anyway, so that we can use $1 to refer to the material from first to last black character (or to the sole
black character in a line that has only one). But sometimes round brackets will be needed within a pattern
just to delimit alternatives – the symbol $1 (or $2, or whatever $… symbol corresponds to that
bracket-pair) will never be used.

10.6 Escaping special characters

In codes like \s (any whitespace character) or \t (tab character), the backslash indicates that the
following character (s or t) is not to be given its literal meaning. But where a character such as asterisk
or full stop has special pattern-matching significance, a backslash is needed before it when it should be
given its literal meaning within a pattern. Each of the following characters needs a backslash if it appears
with its literal meaning in a pattern:

\ | () [{ ^ $ * + ? .

– and the hyphen needs a backslash if it occurs in its literal meaning between square brackets. However, if
you cannot remember precisely which punctuation-type characters require a backslash, it does no harm to
put one in anyway – it is only alphanumeric characters which have non-literal meanings when preceded by
a backslash in a pattern.

So for instance the class of “all characters other than whitespace, lower-case letters, forward slash,
backslash, or circumflex” could be represented as:

[^\sa-z\/\\\^]

It is logical, but it takes a bit of care to work out precisely what a jumble like that is saying. (When I
composed this expression I could not remember whether or not the forward slash needs a backslash in
order to be interpreted literally; in fact it does not, but I put one in anyway.) Real-life Perl applications
often do tend to need just such complicated patterns involving many non-alphanumeric characters. One tip,
when working the pattern out on paper before typing it in, is to write the characters which are used with
special pattern-matching meanings larger, and/or in a different colour, than the characters representing
themselves:

This helps the eye to grasp the logic of what is going on.

10.7 Greed versus anorexia

We saw that Perl pattern-matching is normally “greedy”:

http://bookboon.com/

Download free eBooks at bookboon.com

Click on the ad to read more

Perl for Beginners

49

Pattern matching

$a = "Hertfordshire";
$a =~ /(e.*r)(.*)$/;
print($1, "\n", $2, "\n");

ertfordshir
e

We can make the pattern-matching quantifiers *, +, etc. “anorexic” by suffixing ? to them:

$a = "Hertfordshire";
$a =~ /(e.*?r)(.*)$/;
print($1, "\n", $2, "\n");

er
tfordshire

This works even with the quantifier ? (meaning zero or one) itself:

$b = "Essex";
$b =~ /E(s?)(.*)x/;
print "$2\n";

se

$b = "Essex";
$b =~ /E(s??)(.*)x/;
print "$2\n";

sse

EXPERIENCE THE POWER OF
FULL ENGAGEMENT…

 RUN FASTER.
 RUN LONGER..
 RUN EASIER…

READ MORE & PRE-ORDER TODAY
WWW.GAITEYE.COM

Challenge the way we run

1349906_A6_4+0.indd 1 22-08-2014 12:56:57

http://bookboon.com/
http://bookboon.com/count/advert/bb104666-5119-403f-91c4-a3e7010cbfdf

Download free eBooks at bookboon.com

Perl for Beginners

50

Pattern matching

10.8 Pattern-internal back-reference

We have seen that the symbols $1, $2, etc. can be used to refer back to pattern elements demarcated by
round brackets, when the $… symbols occur outside the pattern – in the replacement part of a s/…/…/
structure, or in a later code line. Sometimes we need to refer back to a pattern element from a later point
within that pattern. For that, the symbols are \1, \2, …	rather than $1, $2, …

Here, for instance, is an example of pattern matching which finds, within a string containing names of
French towns separated by whitespace, a town name which contains the same pair of adjacent vowels at
two separate points in the name:

(11)

1 $towns = "Paris Poitiers Bordeaux Toulouse Lyons Marseilles";
2 if ($towns =~ /(\s|^)(\S*([aeiou][aeiou])\S*\3\S*)(\s|$)/)
3 {
4 print "$2\n$3\n";
5 }

Toulouse
ou

The second word in the string, “Poitiers”, contains two pairs of adjacent vowels, but different pairs; the
use of \3 in the pattern-match means that only the fourth word, “Toulouse”, with the same vowel-pair
“ou” in two places, fits the pattern.

The pattern in 11.2 takes a bit of unpicking.

First, since the $towns string uses whitespace to separate names but does not have whitespace at
beginning or end, in order to ensure that every name including the first and the last is tested we need to
specify that the substrings examined are preceded either by whitespace or beginning-of-line, i.e. (\s|^),
and followed either by whitespace or end-of-line, i.e. (\s|$). These are cases of round brackets which
are included in the pattern purely to delimit alternatives: they are respectively the first and fourth pair of
round brackets in 11.2, but no use is made of the codes $1 and $4.

Between these two pairs of round brackets is the sequence:

(\S*([aeiou][aeiou])\S*\3\S*)

This looks for a continuous sequence of black characters, containing a pair of vowels at some point and
the same pair of vowels at a later point. Notice that this segment of line 11.2 has one pair of round
brackets nested inside another pair. The numbering reflects the sequential order of the opening brackets;
so the outer brackets surrounding the entire segment are pair 2 (pair 1 was (\s|^), remember), and the
internal brackets round [aeiou][aeiou] are pair 3. Hence, within the pattern, \3 refers back to
whatever [aeiou][aeiou] matched (and later, outside the pattern, in line 11.4 $2 and $3 refer
respectively to the whole word, and to that vowel-pair).

http://bookboon.com/

Download free eBooks at bookboon.com

Perl for Beginners

51

Pattern matching

10.9 Transliteration

Finally, apart from the structures m/…/ and s/…/…/, there is a third structure, tr/…/…/ (“tr” for
“transliterate”), which can appear after =~ and which is commonly discussed in Perl textbooks under the
heading “pattern matching”. This is misleading, though: what appears between the left-hand pair of
slashes in a tr/…/…/ construction is not a pattern, the whole of which is looked for in the target string,
but a sequence of individual characters, any one of which, if found, is replaced by the corresponding
character from the right-hand pair of slashes. Thus tr/…/…/ could be used, for instance, to capitalize
each vowel in a string:

$a = "triceratops";
$a =~ tr/aeiou/AEIOU/;
print "$a\n";

trIcErAtOps

The only real reason to deal with tr/…/…/ in this chapter rather than somewhere else is that, like
m/…/ and s/…/…/, it uses the symbol =~ as the link to its target string.

Appendix: A checklist of pattern-matching symbols

[acgt] any of the characters a, c, g, t
[^acgt] any character other than a, c, g, t
[a-t] any of the twenty characters between a and t inclusive
. any character
\d digit \D nondigit
\s whitespace character \S “black” character
\w “word character” \W non-word character
^ beginning of target string $ end of target string
X* any number (zero or more) X’s
X+ one or more X’s
X? zero or one X
X*?, X+?, X?? as above but matching as little as possible
X{3} sequence of three X’s
X{3,} sequence of three or more X’s
X{3,5} sequence of at least three and at most five X’s
(X|Y) either X or Y
\1, \2, … (within a pattern) whatever matched the contents of the 1st/2nd/… pair of round brackets
in this pattern
$1, $2, … (outside a pattern) whatever matched the contents of the 1st/2nd/… pair of round brackets
in the last pattern matched

http://bookboon.com/

